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Abstract: Image-based endoscopy pose estimation has been shown to significantly improve the
visualization and accuracy of minimally invasive surgery (MIS). This paper proposes a method
for pose estimation based on structure-depth information from a monocular endoscopy image
sequence. Firstly, the initial frame location is constrained using the image structure difference
(ISD) network. Secondly, endoscopy image depth information is used to estimate the pose of
sequence frames. Finally, adaptive boundary constraints are used to optimize continuous frame
endoscopy pose estimation, resulting in more accurate intraoperative endoscopy pose estimation.
Evaluations were conducted on publicly available datasets, with the pose estimation error in
bronchoscopy and colonoscopy datasets reaching 1.43 mm and 3.64 mm, respectively. These
results meet the real-time requirements of various scenarios, demonstrating the capability of this
method to generate reliable pose estimation results for endoscopy images and its meaningful
applications in clinical practice. This method enables accurate localization of endoscopy images
during surgery, assisting physicians in performing safer and more effective procedures.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Pose estimation based on endoscopic images has been widely applied in clinical surgeries
[1]. Surgeons evaluate the spatial relationship of the surgical environment and measure the
distance between surgical instruments and the surgical surface based on their experience [2].
However, the tunnel view in endoscopic images may require multiple observations by the
surgeon to obtain information about the same scene, which increases the time and risk of the
surgery [3]. Surgeons’ spatial perception of the surgical direction and distance relies on the
feedback mechanism generated by the actual endoscope motion and image [4]. These feedback
mechanisms help surgeons avoid accidental contact with critical tissues and organs during the
surgery [5]. Therefore, utilizing the image structure and depth information in consecutive frames
of endoscopic images to estimate endoscope motion and pose plays a crucial role in enabling
surgeons to identify 3D structures during the surgery.

There are three primary strategies for endoscopy pose estimation, namely magnetic pose
estimation based on an electromagnetic system, optical pose estimation based on stereoscopic
vision, and image pose estimation based on motion prediction and registration [6,7,8]. Magnetic
pose estimation involves integrating magnetic sensors into the endoscope to record its position as
it passes through an artificial magnetic field during surgery [9]. This method has been applied in
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puncture surgery and bronchoscopy [10,11]. However, most electromagnetic localization systems
have weak anti-interference capabilities and cannot be used in conjunction with MRI devices.
The presence of ferromagnetic surgical instruments used during surgery can distort the magnetic
field, leading to inaccurate localization [12,13]. Additionally, the electromagnetic localization
system is bulky, making it challenging to integrate the electromagnetic sensors onto certain
endoscopes [14]. Optical pose estimation involves attaching infrared reflective markers on the
endoscope and tracking its movement by locating the markers. This method has been applied
in the navigation system for rhinoscopy [15,16]. However, this system requires the marker’s
position to be fixed relative to the endoscope, and occlusion of the marker can lead to positioning
failure, which can limit the surgeon’s ability to operate [17,18].

The image position method relies solely on intraoperative endoscopy images and does not
require any additional hardware equipment [19]. Research on this method can be broken down
into three primary tasks: endoscopy location initialization, interframe image motion estimation,
and endoscopy pose optimization [20,21,22]. To initialize the endoscopy location, a series of
virtual images from CT data are taken, and the location system is initialized by identifying the
coordinates of the most similar virtual images through a similarity calculation between the real
endoscopy image and the virtual image [23,24,25]. Other visual features, such as edge features,
have also been used to compute image similarity. However, this approach may result in the loss
of frames in continuous frame pose estimation due to the presence of multiple similar image
features [26,27,28]. Networks have been employed to produce real texture and depth maps of
the endoscope, and similarity features between images are compared using depth information.
However, this method cannot achieve real-time positioning. Banach et al. [29] developed a
deep learning model for feature extraction based on generative adversarial networks, which
can improve localization performance in weak-textured scenes by leveraging the diversity of
perceptual information. However, this method cannot achieve real-time localization. Mahmoud
et al. [30] utilized the Structure from Motion (SfM) algorithm to reconstruct 3D structures
from videos and used their geometric features for localization. However, similar structures in
surgical scenes, such as intestines and bronchi, may cause positioning errors. Zhao et al. [31]
achieved endoscopy positioning through the mutual constraints of frame motion and structural
prior information. Nevertheless, during experiments, there was a risk that the initial position
might not be within the motion range.

Regarding image interframe motion estimation, the motion estimation algorithm for endoscopy
images is similar to Simultaneous Localization and Mapping (SLAM) [32]. Some researchers
have utilized sparse feature matching to estimate precise clustering frame locations. They
segmented video frames based on the parallax criterion and used the variational method,
combining the zero-mean normalized cross-correlation and gradient norm regularization, to
estimate the endoscopy position [33,34,35]. In feature geometry constraint, an unsupervised
deep learning motion method has been employed to estimate the 3D point projection constraint
relation between front and back frames. However, the method’s applicability is affected by the
extraction of corresponding points during training [36,37]. In a scenario of constant illumination,
visual features have been used to estimate the direction of motion, and an optical flow method
has been incorporated to track endoscopy motion, leading to good results [38,39]. In capsule
endoscopy with a wide range of motion, Dimas et al. [14] employed visual features and depth
information, combined with an optical flow tracking method, for surgical assistance. This enables
the realization of the visualization and localization functions of wireless capsule endoscopy in
the intestinal tract. However, relying on image visual features for localization results can be
influenced by the image quality, particularly in weak-textured images.

In regards to endoscopy pose optimization, the gradient and photometric-based methods
might be affected by image quality, while the depth information-based methods possess stronger
robustness in the optimization process by reflecting the structural information of the current
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position [40,41]. Recasens et al. [42] utilized self-supervised deep networks to generate
pseudocolor-depth images and optimize the endoscopy position using photometric residuals.
However, in intraoperative data with random motion direction, estimation results may exhibit
position drift, leading to the planarization of the 3D reconstruction structure and the loss of some
spatial information [43,44]. Lei et al. [45] employed the Shape from Shading (SfS) algorithm to
generate the corresponding depth map of the image and obtain the target shape for localization
optimization from the single-intensity image. Visual-based methods can track and locate textured
images [46], while learning-based methods can perceive more diverse information, even with
texture-less images [47].

This paper proposes a novel method for pose estimation of a monocular endoscopic image
sequence utilizing structure-depth information. By utilizing the structural differences and depth
information of endoscopic images, the joint estimation of endoscope motion posture is achieved,
and the adaptive cavity boundary constraint method is employed to suppress the cumulative error
of motion between sequence frames. The contributions of this study can be summarized into
three main aspects. Firstly, the structure difference vector generation (ISD) network is constructed
by using the structure difference information between images, and the range of the initial frame is
limited by the region difference information of successive frame segments. Secondly, the depth
information entropy similarity measurement strategy was introduced to convert the endoscopic
pose positioning into the structure-depth information matching between images. Thirdly, the
attitude estimation of continuous frame endoscope is optimized. The geometric features are
used to extend the three-dimensional space domain and reduce the influence of frame sequence
cumulative error on the attitude estimation accuracy.

2. Methods

Accurately estimating the pose of endoscopy is crucial for constructing an internal 3D surface
model that provides feedback on intraoperative endoscopy movement, ensuring a successful
operation for the surgeon. In this section, we detail the method of training ISD networks to
produce image structure difference vectors for initial frame location. We elaborate on how to
achieve precise position information from depth estimation outcomes and introduce a relocation
method for optimizing pose estimation results. The overall training architecture is depicted in
Fig. 1, where all of the concepts we describe in this section are introduced.

2.1. Flowchart of the method

The method’s flowchart is depicted in Fig. 1. In the initial frame location module, the cavity
region reconstructed from CT data and corresponding endoscopy image sequences are divided
into several subsections. Then, the ISD network training generates the structure difference vector
of endoscopy images. Subsequently, the similarity measure of the structure difference vector
between the initial frame of intraoperative endoscopy and the sequence frame of virtual endoscopy
is used to locate the initial frame of the intraoperative endoscopy. In the pose estimation module,
during the filming process of virtual endoscopy, the pose and depth information of each frame
are obtained. Then, the pose estimation of intraoperative endoscopy images is achieved by
maximizing the similarity measure of depth information entropy between intraoperative and
virtual endoscopy images. In the repositioning optimization module, the cavity boundary
constraint is constructed with the position of the current frame. If the current frame’s position
exceeds the adaptive error threshold, the current frame is repositioned as the new initial frame.

2.2. Initial frame location

To obtain the initial frame location information, the ISD network is constructed as depicted in
Fig. 2. In the input preparation step, the cavity’s surface is segmented using preoperative CT data,
and the cavity’s internal structure is imaged using virtual endoscopy. Then, the intraoperative and
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Fig. 1. Flowchart of the proposed structure-depth information based method for pose
estimation from monocular endoscopy image sequence method.

virtual endoscopy image sequences are segmented into different regional structures by surface
region structure division. A virtual image and an intraoperative image in the same segment are
chosen as positive sample and reference images, respectively, while a virtual image in a different
segment is utilized as a negative sample image. The three images are simultaneously inputted
into the ISD network. Based on the triple network structure, the network carries out image
structure difference vector training using three similar branch network structures.

In the branch network (indicated by the dotted box in Fig. 2), the input of the convolutional
coding layer is a 3×H×W image, where 3 represents the image’s three-channel (R,G,B), and H
and W represent the image’s height and width, respectively. We employ the ResNet structure to
construct the branch network. Initially, a convolution layer with a convolution kernel size of 7× 7
extracts the image’s structure features on a large perceptual range. Subsequently, four ResNet
blocks with a convolution kernel size of 3× 3 at different levels sequentially extract structural
features, and an average pooling operation with a step size of 2 is performed on the extracted
structural features. Subsequently, four more structure feature extraction and average pooling
operations are performed on ResNet blocks with different layers. Finally, the feature is encoded
into a 128-dimensional vector using the fully connected layer as the structural difference vector
of the image.

To enhance network learning efficiency, we utilize the image line feature as a prior knowledge
of the image structure. Initially, the line feature of the original input image is extracted to acquire
the structure prior map. In the upsampling and decoding layer, after four convolution operations
with a convolution kernel size of 3× 3 and deconvolution processing with a step size of 2, the
structure feature map of 1×H×W output is obtained. This strategy can guide the network to
focus on the feature-rich region of the image by reducing the discrepancy between the output
structure feature map and the structure prior map.

In the structure loss function Lstructure, m is the structure feature map, m′ is the prior of structure
map. The range of m and m′ are (0, 1). In the loss calculation, the cross entropy loss in the two
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Fig. 2. The image structure difference (ISD) network architecture.

images is calculated pixel by pixel, and the loss matrix of the same size as the original image is
obtained. The function is defined as follows:

Lstructure(m, m′) = −m logm′ − (1 − m) log(1 − m′) (1)

To effectively cluster the structural difference vectors corresponding to each subregion image
generated by the training network, we use the positive and negative sample comparison learning
method to output the multi-branch clustering features from the model. Two outputs representing
the regression offsets of positive samples and negative samples to reference images are generated
through the fully connected layer. Therefore, the structural difference vector loss function Lvector
is defined as follows:

Lvector(fp, fr, fn) = max(∥fp − fr∥ − ∥fn − fr∥ + γ, 0) (2)

Where, fp, fr, fn represents the image structure difference vectors of positive sample, reference
sample and negative sample respectively. γ is the quantity of control boundary, and the adjustment
range is (0.5 ∼ 2). By gradually reducing the distance between fr and fp, and increasing the
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distance between fr and fn, which is enables fr obtain structure difference vector results with
greater differentiation in different regional structures. Finally, the structure difference vector set
{f1, f2, f3, . . . fk} of sequence frames was obtained.

The closest structural difference vector fmin is obtained by comparing the similarity between
the structural difference vector of initial frame fnew and the sequence frame. This image location
pfmin_location corresponding to the structural difference vector is recorded as the initial frame
position p0_location. The image structure difference vector similarity measure is defined as follows:

fmin → arg min∥fnew − fi∥, fi ∈ {f1, f2, f3, . . . fk} (3)

p0_location = pfmin_location (4)

2.3. Pose estimation

In the virtual endoscopy image, the depth information of each frame can be obtained using the
cavity model and the endoscopic pose. For the intraoperative endoscopy image, we utilized a
self-supervised learning method to acquire image depth information [51]. Subsequently, we
obtain the information entropy of the depth map of the virtual and intraoperative endoscopy
images, respectively.

H′ −
∑︁

d′
(i,j) log d′

(i,j) (5)

H′(sn) = − 1
n

n∑︁
(i,j)∈sn

d′
(i,j) log d′

(i,j) (6)

H = −
∑︁

d(i,j) log d(i,j) (7)

H̄(sn) = − 1
n

n∑︁
(i,j)∈sn

d(i,j) log d(i,j) (8)

Where, H′ is the information entropy of the virtual endoscopy image depth map, H is the
information entropy of the intraoperative endoscopy image depth map. sn is the fan-shaped n
equal division of the circular visual region of the endoscopy image. H′ is the mean value of
information entropy of the subblock region of the depth map of the virtual endoscopy image,
H̄ is the mean value of information entropy of the subblock region of the depth map of the
intraoperative endoscopy image. Then, the similarity of the depth map information entropy
between the intraoperative and virtual endoscopy images was measured by the cross-correlation
mean square error similarity method of the image depth information entropy.

scorr_info (H, H′) = 1
n
∑︁
((H − H̄) − (H′ − H′))

2 (9)

Where, scorr_info is the similarity measurement method of cross-correlation mean square error.
The motion variables ∆ppose of the two frames were estimated by maximizing the similarity
measure of cross-correlation mean square error.

pk_pose = p(k−1)_pose + ∆ppose (10)

∆ppose = arg max
∆ppose

scorr_info {Hk, H′(p(k−1)_pose + ∆ppose)} (11)

Where, pk_pose is the pose of pk frame image, p(k−1)_pose is the pose of p(k−1) frame image. This
method estimated the optimal pose change ∆ppose by maximizing the depth map similarity
between the intraoperative endoscopy image and the virtual endoscopic image of pk frames.
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2.4. Repositioning optimization

The estimation of the interframe pose of the endoscopy image may produce drift errors, which
gradually accumulate and seriously affect the positioning accuracy. To solve this problem, an
adaptive boundary constraints method is used to optimize the position estimation results. To
accurately calculate the error range of the current frame motion, we use the adaptive cavity
boundary method to obtain the adaptive boundary constraint B in the cavity where the current
frame pc is located.

B(pc) = F(pc, πr2) (12)

r = min ∥g(pc), s(pc)∥ (13)

Where, r is the radius of the tangent circle. g(pc) is the point on the center line of the cross section
of the cavity at the position of the current frame pc. s(pc). is the cross section surface of the
cavity at the position of the current frame pc. By calculating the order of distance between point
g(pc) and any point on the cross section surface s(pc), the minimum value of distance is obtained
as the error threshold. F(∆,∆) is the function to obtain the adaptive boundary constraint. Then,
the adaptive error range was determined based on the adaptive boundary constraint conditions.

Drelocation(pc) =

⎧⎪⎪⎨⎪⎪⎩
pc_pose ∉ B(pc), 1

pc_pose ∈ B(pc) , 0
(14)

Were, Drelocation is the determination method of the inclusion relationship between the current
frame pose information and adaptive boundary constraints. If the pose of the current frame
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Fig. 3. The diagram of current frame position error determination.
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exceeds the adaptive boundary constraints, it indicates that the accumulated motion error of the
current frame is too large, and the pose estimation should take the current frame as a new start
frame. Otherwise, reposition optimization is not performed.

To prevent the cumulative error in the localization of multi-frame endoscopy in narrow cavities,
an adaptive boundary constraints method is used for optimization, as illustrated in Fig. 3. In an
independent branch structure of bronchial data, the yellow line represents the motion trajectory
formed by the endoscopy location results of continuous frames, the red endoscopy denotes the
current frame, and the red circle is inscribed on the structure. Initially, during the continuous
frame endoscopy motion process, the cavity’s spatial environment changes significantly, so we
measure the minimum radius of the inscribed circle on the internal surface. Thereafter, the
minimum radius is employed as the adaptive error threshold to determine relocation. Finally, if
the error is greater than the threshold, the frame is utilized as the initial frame for relocation, and
the optimization outcome of endoscope positioning is obtained.

3. Experiments

3.1. Datasets and implementation details

Our training data are generated from two unlabeled endoscopy videos, the first is from the
Monocular Frames for Bronchoscopy Navigation (MBN) dataset [23], and the other is from the
Hamlyn dataset [48]. In the MBN dataset, there are ten distinct scenarios datasets of surface,
and the image resolution is 512*512. The ground truth of localization was recorded using
virtual endoscopy roaming in the CT reconstruction model. In Hamlyn dataset, there are five
different scenario datasets of surface, and the image resolution is 1280*1024. The ground truth
of endoscopy localization was recorded with a robotic arm. The training set comprises 12 (8
from the MBN dataset and 4 from the Hamlyn dataset) data, while the validation set encompasses
3 (2 from the MBN dataset and 1 from the Hamlyn dataset) data, as demonstrated in Table 1.

Table 1. Dataset details of endoscopy image

Dataset Category Ground truth Describe

MBN [23] Bronchoscopy Virtual endoscopy roaming
in CT reconstruction model.

Contains 10 different
scenario datasets of surface,
image resolution is
512*512.

Hamlyn [48] Colonoscopy A robotic arm records
localization.

Contains 5 different
scenario datasets of internal
surface, image resolution is
1280*1024.

To improve the robustness of the training network, several rendering methods are employed
to supplement the image to simulate the localization ability with different lighting and texture
changes. Figure 4 depicts the rendering images for different textures. The virtual endoscopy
images were utilized to simulate the color and texture characteristics of the complex intraoperative
environment to enhance the model’s adaptability to different texture images. Figure 4 (1) Original
image, (2) Darkened illumination processing, (3) Highlight removal processing, (4) Increased
illumination processing, (5) Grayscale processing, (6) Noise addition processing, (7) Texture
smoothing processing, (8) Depth map ground truth for the scene.

All experiments are conducted on a workstation with NVIDIA GeForce RTX 3090 GPU, with
24 GB memory. Pytorch framework is used to build the learning network. In depth information
location estimation network, the learning rate of the optimization controls the updating rate
of the weights, we use dα = 0.001 to get better convergence performance with faster initial
learning efficiency. The exponential decay rate of the first moment estimate is dbeta1 = 0.9. The
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Fig. 4. Model extension training images. (1)-(7) show the rendered images for different
textures, (8) depicts the depth map.

exponential decay rate of the second moment estimate is dbeta2 = 0.999. The positive parameter
factor is dϵ = 10E − 8.

3.2. Evaluation metrics

The performance of the endoscopy localization method was evaluated using multiple indicators.
The absolute translational error (ATE) can directly reflect the estimation accuracy and global
consistency of trajectory. The relative posture error (RPE) describes the difference between
the estimated position and the ground truth. Because the estimated pose and the ground truth
pose are not in the same coordinate system, the iterative closest point (ICP) method was used to
register the two poses. For the monocular endoscopy scale is uncertain, we use the similarity
transformation matrix S to calculate the conversion from the estimated pose P to the ground truth
Q, where the ATE and RPE of frame i in the estimated pose are defined as fi and ei respectively:

fi = Q−1
i SPi (15)

ei = (Q−1
i Qi+1)

−1
(P−1

i Pi+1) (16)

Then, the root mean square error (R.SE) was used to make statistics on ATE and RPE of each
frame, and an overall evaluation index was obtained respectively:

FRMSE(fi:n,∆)

(︄
1
m

m∑︂
i=1

∥fi∥2

)︄ 1
2

(17)

ERMSE(ei:n,∆) =

(︄
1
m

m∑︂
i=1

∥ei∥
2

)︄ 1
2

(18)

In initial frame localization, the proportion of correct estimated is used to evaluate the
performance of the algorithm. To evaluate the accuracy of the results, using the following
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formula:
Accuracy = Qt

QN
× 100% (19)

Where, Qt. is the number of correctly segmented estimated image, and QN is the total number of
images.

3.3. Initial frame location estimation

Virtual endoscopy roaming was utilized to simulate the movement process of actual endoscopy
in model data. The topology of the bronchus was rich and the path was narrow, and the rotation
angle at the connection was large, which could lead to significant errors in localization and
affect the segmented estimation. Compared with the model data, real endoscopy data can more
effectively reflect the uncertainties of clinical operation. For example, doctors may need to repeat
their observation of the same region during the operation, leading to back-and-forth movement
of the endoscope. Figure 5 illustrates two groups of bronchoscopy data and two groups of
colonoscopy data used to compare the accuracy of segmented localization estimation between
the Offset-Net [49] method and the proposed method. Figures (1) and (2) denote the results
of the Offset-Net method and the proposed method, respectively. Figures (a) and (b) are two
groups of bronchoscopy results, while (c) and (d) are two groups of colonoscopy results. The
blue dots represent the correct segment frames, whereas the red dots represent the incorrect
segment frames in segment estimation. The yellow lines denote the ground truth localization
of the endoscopy. In bronchoscopy data, the Offset-Net method has a significant cumulative
impact on the estimation errors, specifically in the region with a larger rotation perspective. In
colonoscopy data, the Offset-Net method tends to confuse the estimation position in the turn-back
scenario, resulting in several initial frame estimation errors. Our method can maintain a high
level of correct estimation in various data scenarios and has a high degree of robustness.

The number of error frames in continuous frames reflects the reliability of initial positioning
results. We employed the ratio of the quantity of errors (Our / Offset-Net) as the evaluation
index, as indicated in Table 2. In the experiment, six groups of bronchoscopy data and four
groups of colonoscopy data were utilized for segmented location estimation, and each scene was
divided into the front, middle, and end segments for comparison based on the average number of
total frames. As Table 2 indicates, the number of estimation errors gradually increases in the
Offset-Net method as the endoscopy moves, making it more susceptible to adverse factors during
endoscopy shooting. Our method can maintain a low number of estimation errors in various data
scenes and has high robustness towards various influencing factors.

Table 2. Average estimation results of initial frame location

Dataset Scene Front Middle End

Bronchoscopy

1 0.41 0.23 0.56

2 0.63 0.33 0.18

3 0.56 0.33 0.25

4 0.59 0.50 0.29

5 0.37 0.56 0.26

6 0.42 0.38 0.49

Colonoscopy

1 0.60 0.50 0.38

2 0.27 0.31 0.08

3 0.55 0.29 0.17

4 0.43 0.30 0.34
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Fig. 5. Initial frame location estimation results. (1) and (2) denote the results of the
Offset-Net and the proposed method, (a) and (b) are two groups of bronchoscopy results, (c)
and (d) are two groups of colonoscopy results.



Research Article Vol. 15, No. 1 / 1 Jan 2024 / Biomedical Optics Express 471

Table 3 compares the accuracy of the Offset-Net and our method, where the ISD network was
employed to estimate the initial frame location. In bronchoscopy and colonoscopy data, the
average accuracy reached 95.8% and 95.7%, respectively, which is 2.7% and 5.4% higher than
that of the Offset-Net method. The experimental outcomes indicate that our method outperforms
the Offset-Net method in six scenarios in terms of segmented location estimation results. In
bronchoscopy data, scene 3 contains motion blur, and topological branching leads to a decrease
in the accuracy of the estimation results. In colonoscopy data, our method can still obtain high
accuracy estimation outcomes.

Table 3. Accuracy comparison of initial frame location estimation

Method Bronchoscopy Colonoscopy

Scene 1 2 3 4 1 2

Offset-Net 89.2% 94.2% 91.9% 97.2% 91.4% 89.3%

Ours 94.8% 96.5% 93.9% 98.1% 96.4% 95.0%

3.4. Interframe pose estimation

We verified the angle error and translation error of positioning estimation of 1000 continuous
frame endoscope images by comparing them with three different position methods, as depicted
in Fig. 6. (a) shows the error of the angle result, and (b) represents the error of the translation
result. The yellow line indicates the Offset-Net method’s outcome, the green line represents the
Iopt-Net [50] method, the blue line corresponds to the HMT [31] method, and the red line shows
the result of our method. Concerning the error of angle results, the Iopt-Net and HMT methods
have a larger range of error and lower estimation stability in continuous frame location estimation
results. The Offset-Net method has high accuracy in the initial estimation, but the error increases
as the frames advance continuously. The error range rises abruptly due to the cumulative error
after 400 frames. Our method has a high initial error, but the error returns to a lower range
and remains stable with the process of continuous frame advance. Regarding the error of the
translation result, the HMT method has a larger range of errors. The Iopt-Net method can keep
the error range low and stable. The Offset-Net method has high accuracy in the initial estimation,
but the error increases with the process of continuous frame advance. The error range increases
sharply due to the cumulative error after 200 frames. Our method can remain stable with the
process of continuous frame advance. Overall, our method exhibits high estimation stability in
the two error indicators and has high robustness in continuous frame location estimation.

Ours
TBA-Net
Iopt-Net
Offset-Net

Ours
TBA-Net
Iopt-Net
Offset-Net

Frame Number Frame Number

(a) Error of angle (b) Error of translation

Fig. 6. Interframe pose estimation performance. (a) represents the error of the angle result,
(b) represents the error of the translation result.
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We also quantitatively evaluated the location estimation of continuous frame using six groups
of bronchoscopy data and four groups of colonoscopy data. We compared the results of the
HMT, Offset-Net, and Iopt-Net methods, as indicated in Table 4. The absolute trajectory error
(ATE) and relative attitude error (RPE) were used to estimate the location and ground truth. The
HMT method combines the epipolar constraints with the Kalman filter and image registration
technique to obtain the estimation of the location displacement between frames. However, the
accuracy of this method significantly decreases in ATE and RPE due to the influence of image
quality and tissue deformation. The Offset-Net method uses the generative adversarial network
to locate the endoscopy in different environments, but in the data with a long motion period,
the error of the two indicators is large. On the other hand, the Iopt-Net method can effectively
avoid the cumulative error of multi-frame location by combining the two-path ResNet structure
with the iterative optimization algorithm. In the bronchoscopy data, the second group of RPE
and the fifth group of ATE indicators obtained better results. Our method reduced the errors by
17.9%, 28.5%, and 15.2%, 19.5% in the two indicators. Overall, the comprehensive experiments
demonstrated that our method has good performance in location estimation in various scenarios.

Table 4. Comparison of ATE and RPE with continuous frames.

Dataset Scene Evaluation HMT Offset-Net Iopt-Net Ours

Bronchoscopy

1
ATE 2.03 1.23 0.59 0.38

RPE 0.87 0.29 0.17 0.16

2
ATE 6.52 3.26 2.37 2.04

RPE 0.77 0.48 0.51 0.59

3
ATE 9.13 7.04 2.62 1.56

RPE 0.79 0.44 0.35 0.26

4
ATE 3.74 1.96 0.88 0.57

RPE 0.71 0.28 0.45 0.25

5
ATE 5.16 3.83 2.14 2.57

RPE 0.75 0.24 0.54 0.21

6
ATE 4.45 2.84 1.51 1.47

RPE 0.72 0.33 0.64 0.32

Colonoscopy

1
ATE 4.27 2.75 1.48 1.21

RPE 0.79 0.56 0.38 0.29

2
ATE 7.33 5.15 2.49 1.76

RPE 0.61 0.55 0.43 0.38

3
ATE 4.45 2.73 1.52 1.48

RPE 0.68 0.52 0.47 0.36

4
ATE 4.51 3.74 1.82 1.62

RPE 0.74 0.53 0.61 0.49

3.5. Positioining the optimization result

Continuous frame endoscopy location estimation is susceptible to cumulative errors. To address
this issue, we adopted the adaptive boundary constraints method to acquire position updates, as
depicted in Fig. 7. We compared the localization estimation accuracy between the Offset-Net
method and the proposed method using two groups of bronchoscopy data and two groups of
colonoscopy data. (1) shows the results of the Offset-Net method, while (2) shows the proposed
method. (a) and (b) display two groups of bronchoscopy results, whereas (c) and (d) represent two
groups of colonoscopy results. The blue line represents the optimization outcome of continuous
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frame location estimation or adaptive boundary constraints estimation, while the yellow line
corresponds to the ground truth. In the experiment’s four groups of data outcomes, the initial
estimation results of continuous frame localization are accurate. However, the cumulative error
significantly increases with multi-frame location estimation, particularly in the rotating region
and turn-back path region. The adaptive boundary constraints method can efficiently suppress
cumulative error and enhance positioning accuracy.

Repositioning OptimizationOffset-Net Ours

Fig. 7. Repositioning optimization results. (1) and (2) shows the results of the Offset-Net
and ours method. (a) and (b) display two groups of bronchoscopy results, (c) and (d)
represent two groups of colonoscopy results.
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Table 5. Time efficiency comparison of different methods.

Dataset Method
Error (mm) Time (s)

mean SD max mean SD max

Bronchoscopy

Offset-Net 1.68 1.69 1.99 0.82 2.49 1.05

HMT 3.05 2.52 3.29 12.01 2.92 20.84

Iopt-Net 1.59 1.26 0.99 1.76 3.63 6.37

Ours 1.43 1.61 1.82 0.93 1.01 1.19

Colonoscopy

Offset-Net 5.26 3.62 6.75 1.23 1.16 2.45

HMT 14.59 5.18 19.95 15.92 3.95 29.92

Iopt-Net 5.04 1.81 5.63 2.34 2.83 8.97

Ours 3.64 1.46 3.77 1.35 1.36 3.55

In Fig. 8, we present the continuous frame endoscopy localization estimation results of different
topologies on the same bronchial data. (a)-(c) demonstrate the localization results of the three
branches. The black wireframe displays an enlarged view of branch details, the yellow line
represents the ground truth, and the red dot denotes the endoscope positioning estimation results
in each frame. Experimental outcomes indicated that our proposed method effectively avoids
the confusion of similarity in different topological structure estimations of the same data and
maintains high robustness in varying scenarios.

To evaluate our method’s performance, we compared its location error and time consumption
with three other methods. Six groups of bronchoscopy data and four groups of colonoscopy data
were sampled and verified in the experiment. To enable a fair comparison, we normalized the
location error and time consumption and compared them in the same order of magnitude. The
results are presented in Table 5. Among the bronchoscopy and colonoscopy data, Offset-Net
demonstrated excellent time efficiency. The HMT method had high location error and low time
efficiency. The Iopt-Net method offered excellent stability. Our method achieved the lowest
location error and similar stability to the Iopt-Net. Moreover, our approach met the real-time
performance requirements in various scenarios.

By statistically analyzing the mean and variance of the number of error frames, this chapter’s
method can reflect the precision changes in the localization estimation. In the experiment, 6
groups of bronchial images and 4 groups of intestinal images were used, and they were divided
into the front, middle, and back segments according to the average total number of frames for
comparison, as shown in Fig. 9. The blue line in the figure represents the mean number of
localization error frames for bronchial images, the orange line represents the mean number of
localization error frames for intestinal images, the gray line represents the variance of the number
of localization error frames for bronchial images, and the yellow line represents the variance
of the number of localization error frames for intestinal images. The changing trends show
that the mean number of localization error frames for both bronchial and intestinal images is
decreasing, indicating that the Offset-Net method has a continuously decreasing localization
accuracy compared to the method in this chapter. The variance of the number of localization
error frames for both bronchial and intestinal images shows a stable trend, indicating that the
method in this chapter is not easily affected by changes in the number of images and has good
localization accuracy stability.
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Fig. 8. Results of endoscopy image pose estimation. (a)-(c) demonstrate the localization
results of the three branches.
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Fig. 9. Error analysis of pose estimation in different scenarios.

4. Conclusion and discussion

This work presents a structure-depth information based monocular endoscopy localization method,
which is used to improve the position ability of endoscopy based on the 2D images. The ISD
network was used to generate the structure difference vector of each endoscopic image. To
improve the efficiency of network learning, the prior knowledge of image structure is used to
guide the network focus region in an image. An image depth information entropy similarity
maximization method is introduced to improve the accuracy of pose estimation. Then, the
repositioning strategies are used to avoid cumulative errors affecting the results. Experiments with
published datasets show that the proposed method can improve the accuracy of pose estimation of
monocular endoscopy images and reconstruct more accurate endoscopy motion at the same time.
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